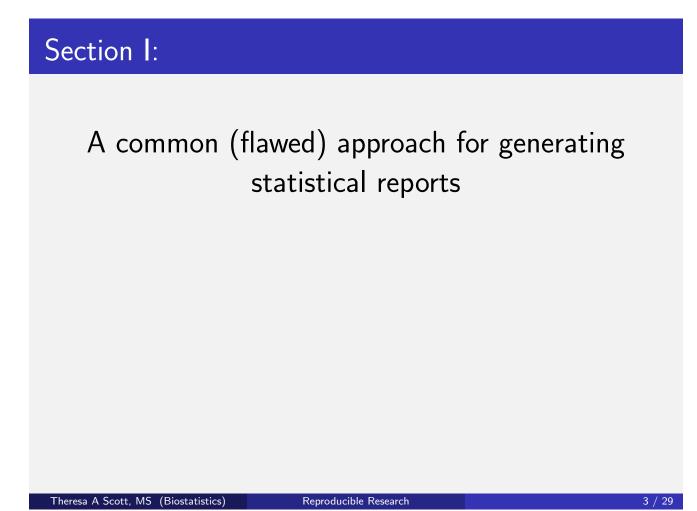
Theresa A Scott, MS

Department of Biostatistics theresa.scott@vanderbilt.edu http://biostat.mc.vanderbilt.edu/TheresaScott

Reproducible Research


Theresa A Scott, MS (Biostatistics)

This lecture...

- ▷ Learning objectives:
 - To understand the concept & importance of reproducible research.
 - To understand the role of each software component in the automatic generation of statistical reports.
 - To understand how to generate a reproducible statistical report from scratch.

 \triangleright Outline:

- A common (flawed) approach for generating statistical reports.
- A (better) alternative approach.
- How to generate reproducible statistical reports using R, LATEX, & Sweave.
- Some additional information.

Typical steps leading up to the reporting

▷ FIRST,

- Data entry & storage.
- Data cleaning (including checking for, resolving, & correcting data entry errors).
- Data preparation (including transforming/recoding variables, creating new variables, & creating necessary subsets).
- Performing the proposed statistical analyses, including generating desired graphs.
- Recording/saving the desired results/graphs.

\triangleright FINALLY,

 Writing a results report, which may include documentation text, tables and/or graphs.

'Common' approach: write report around results

▷ First, **POINT & CLICK**

- Use Microsoft (MS) Excel for data entry/cleaning/preparation, & possibly statistical analyses.¹
- Possibly import the data into SPSS (point & click statistical software package) for data preparation & statistical analyses.
- Possibly use MS Excel to record/format the desired results & generate the desired graphs

▷ Then, COPY & PASTE/TYPE BY HAND

- Take advantage of pre-formatted tables & graphs generated by many statistical software packages, like SPSS.
- Copy & paste/type by hand desired results (text, tables, graphs) from data analysis system to a word processor (eg, MS Word).

 ¹BAD IDEA: Handling of missing data; poor algorithms & unreliable results – see lecture. Okay for data entry.

 Theresa A Scott, MS (Biostatistics)
 Reproducible Research

Problems with 'common' approach

▷ **VIGNETTE 1**: You sit down to finish writing your manuscript. You realize that you need to clarify one result by running an additional analysis. You *first* re-run the primary analysis. Major problem: the primary results don't match what you have in your paper.

▷ VIGNETTE 2: When you go to your project folder to run the additional analysis, you find multiple data files, multiple analysis files, & multiple results files. You can't remember which ones are pertinent.

▷ **VIGNETTE 3**: You've just spent the week running your analysis & creating a results report (including tables & graphs) to present to your collaborators. You then receive an email from your PI asking you to regenerate the report based on a subset of the original data set & including an additional set of analyses – she would like it by tomorrow's meeting.

Problems with 'common' approach, cont'd

 \triangleright With point & click programs (eg, MS Excel or not using SPSS's log), no way to record/save the steps performed that generated the documented results.

▷ Common to keep analysis code, results, & reports as separate files & to save various versions of each of these as separate files.

After several modifications of one or more of the files involved, becomes unclear which version of the files *exactly* correspond to the desired analysis & results.

▷ Every time analyses and/or results change, have to *re*generate the results report *by hand* – very time consuming.

 \triangleright Very easy for human error to creep into results report (eg, typing in results by hand, copying/pasting the wrong tables/graphs).

Theresa A Scott, MS (Biostatistics)Reproducible Research7 / 29

Section II:

A (better) alternative approach

Alternative to 'common' approach

▷ First, use **R** instead of Excel/SPSS for data cleaning/prep & statistical analyses (including graphs).

- R is a *programming language* removes point & click.
- R is *free* to run, study, change, & improve.
- R runs on Windows, MacOS, Linux & UNIX platforms.
- R has publication quality graphing capabilities.
 - Able to generate typical statistical plots (eg, scatterplots, boxplots, & barplots).
 - Follows a 'build your plot in layers' framework later graphical output (possibly) obscures previous output that it overlaps.
 - Allows you to add additional information (such as points, lines, or a legend) to an existing plot to make it more customized.
 - Also allows you to create a plot 'from scratch' when no existing plot provides a sensible starting point.

Theresa A Scott, MS (Biostatistics)

Reproducible Research

9 / 29

Alternative to 'common' approach, cont'd

▷ Then, use **ETEX** instead of MS Word for writing the report.

- LATEX is a document preparation system, *not* a word processor.
 - Rather than type words & then format them using drop-down menus, the formatting is part of the text (specified using commands).
 - Saves you time.
- LATEX contains features for
 - (1) automatic formatting of title pages, section headers, headers/footers, & bulleted/ enumerated lists;
 - (2) cross-referencing of sections, tables, & figures;
 - (3) typesetting of complex mathematical formulas;
 - (4) creating tables & inserting graphs; &
 - (5) automatic generation of bibliographies & indexes (eg, table of contents).

Alternative to 'common' approach, cont'd

▷ **A PROBLEM REMAINS**: Have removed point & click with R & have saved time spent formatting with LATEX, but still haven't removed the need to copy & paste results and/or type them by hand.

BETTER APPROACH: Embed the analysis into the report.

That is, embed the R code to clean/prep the data & to perform the desired statistical analysis into the LATEX document that contains the documentation text of the report.

▷ Possible using a tool called **Sweave**.

- Actually, a *function* in R.
- Called 'S-weave' not 'R-weave' because R is an implementation of the S language.
- Created by Friedrich Leisch, PhD.

Theresa A Scott, MS (Biostatistics)

Reproducible Research

Better approach: using Sweave

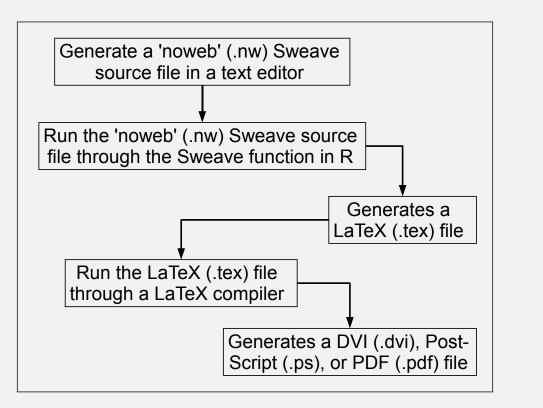
 No longer need to copy & paste results and/or type them by hand.

▷ The statistical report is now completely *reproducible*.

Allows for truly **reproducible research**.

 \triangleright Also, the report is now *dynamic*.

Can be easily regenerated when the data or analyses change – all of the results/tables/figures are automatically updated.


How to generate reproducible statistical reports using R, LATEX, & Sweave

Theresa A Scott, MS (Biostatistics)

Reproducible Research

13 / 29

Diagram of process

'Noweb' (.nw) Sweave source file

▷ **'Noweb'**: *literate-programming* tool; allows you to combine program source code & corresponding documentation into single file.

▷ **Sweave source file**: a text file which consists of a sequence of R code & LATEX documentation segments called *chunks*:

- ETEX documentation chunks start with a line that has only an @ ('at') sign.
 - Default for the first chunk is documentation no @ sign needed.
- **R** code chunks start with a line that has only <<>>=.
 - <>>= syntax can be modified to have additional control.
- IMPORTANT: Because the Sweave source file is a pre-cursor to a LATEX document it must also include the *file structure items* necessary for a LATEX document.
- Created in any text editor (eg, Notepad) & saved to relevant project folder/directory (eg, where data files are located).

Theresa A Scott, MS (Biostatistics)

Reproducible Research

15 / 29

Simple example: example.nw

<pre>\documentclass[12p \usepackage[margin= Sweave Examp Jane Doe, M \begin{document} \maketitle</pre>	1.0in]{geometry}
<pre>\section{Analysis \ The \texttt{mtcars} comprised of 11 asp (columns) for 32 au is a significant di</pre>	(`Motor Trend Car Road Tests') data set is ects of automobile design and performance tomobiles (rows). We wish to know if there fference in the quarter mile track times ween the different cylinder classes
FUN = median, na	R code chunk (X = qsec, INDEX = list(cyl), .rm = TRUE)) l.test(qsec ~ cyl))\$p.value Return to a LaTeX documentation chunk
\end{document}	LaTeX file structure item

'Sweaving' the .nw file

 \triangleright At the R command line prompt ('>'), execute the Sweave function by specifying a single argument – the name of the .nw file.

- Example: Sweave("example.nw")
 - File name specified in quotes & must include extension (.nw).
- IMPORTANT: The R session's 'working directory' must be the folder/directory in which the .nw file is located see R lectures.
- Will receive screen output: Writing to file example.tex Processing code chunks...
- If all goes well, will receive the screen output

You can now run LaTeX on 'example.tex'

- & a new command line prompt.
 - .tex LATEX file is created in same folder/directory as .nw file.
- If error occurs, will be told which code chunk error occurred in referenced by number (1, 2, ...; <<>>= counted).

Theresa A Scott, MS (Biostatistics)

Reproducible Research

17 / 29

What changes from the .nw to the .tex file

automobile design and p there is a significant	n] {geometry} otherwise, LaTeX input file structure items unmodified LaTeX documentation chunk unmodified
<pre>\begin{Sinput} > data(mtcars) > names(mtcars) \begin{Soutput} [1] "mpg" "cyl" "disp \end{Soutput} \begin{Soutput} > with(mtcars, tapply(X \end{Sinput} > begin{Soutput} 4 6 8 18.900 18.300 17.175 \end(Soutput} \begin{Sinput}</pre>	<pre>bde chunk executed - both the R commands and their bective output have been transferred, embedded in put and Soutput environments, respectively p" "hp" "drat" "wt" "qsec" "vs" "am" "gear" "carb" = qsec, INDEX = list(cyl), FUN = median, na.rm = TRUE)) test(qsec ~ cyl))\$p.value LaTeX input file structure item unmodified * provides aggingements for bracetting B (5) input/submts.</pre>
\end{document}	*: provides environments for typesetting R (S) input/output; exact path () will be different on your computer

Reproducible Research

Compiling the .tex file

 \triangleright On a Linux/Unix machine:

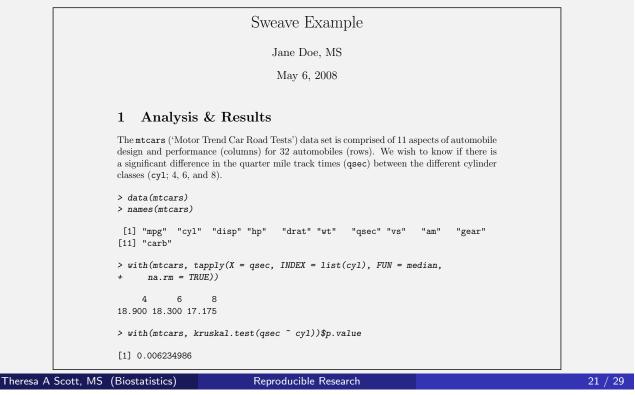
- Open a Terminal shell & using the cd command, move to the relevant working directory (where the .nw/.tex files are saved).
- To create a PDF (.pdf) file², execute the pdflatex command at the command prompt – eg, pdflatex example
 - Do not need to specify .tex extension.
 - .pdf file created in same directory as the .nw/.tex files.
- Often necessary to compile the tex file $twice^3$ use &&
 - Example: latex example && latex example
- If all goes well, will be returned to a new command prompt.
- Other options: R's system() function or a shell script (see Sweave manual FAQ A.3).

```
^3For elements like a table of contents & cross-referencing (ie, section, table, & figure labeling)
```

Theresa A Scott, MS (Biostatistics) Reproducible Research

19 / 29


Compiling the .tex file, *cont'd*


▷ On a Windows/Mac machine:

- Use MikTeX (free @ http://miktex.org).
 - May have problem referencing Sweave style (.sty) file because of the *space* in the 'Program Files' folder name – see Sweave manual (FAQ A.12) for solution.
- Can also use a text editor like WinEdt, which by default is already configured for MikTeX – point & click capabilities.
 - Free @ http://www.winedt.com/; MikTeX must be installed.
- If no WinEdt:
 - Open a Terminal shell by clicking on 'Run' from the 'Start' menu & typing 'C:/command' (or 'cmd').
 - Using the cd command, move to the relevant working directory.
 - Use commands similar to latex and pdflatex.⁴

 $^{^2}$ Use the latex command to create a DVI (.dvi) file.

⁴Usually not necessary to compile the .tex file twice – MikTeX compiles as many times as necessary. Theresa A Scott, MS (Biostatistics) ______ Reproducible Research ______

Modifying R code chunk output - <<>>= options

▷ Named 'flags' (separated by commas) can be specified within the <<>>= R code chunk header to pass options to Sweave, which control the final output.

- echo flag: value indicating whether to include (true) or not include (false) the R code (commands) in the output file.
- results flag: value indicating whether to include (verbatim) or not include (hide) the results of the R code (ie, what is normally printed to the screen) in the output file.
- When just <<>>= is specified, Sweave implements the *default* values of the echo & results flags as we saw, both the R code & its results are included in the output file.
 - <<>>= is equivalent to <<echo = true, results = verbatim>>=.
- Often use <<echo = false, results = hide>>= for R code chunks that contain data input, cleaning, & preparation steps.

<<>>= options, *cont'd*

 \triangleright Can generate *tables* using a results = tex flag.

- R code chunk contains the code that generates the LATEX syntax to create a table.
 - ETEX syntax is inserted in the .tex file; the table is created when the .tex file is compiled.
- LATEX syntax generating functions available from the Hmisc & xtable add-on packages⁵ - latex() & xtable()/ print.xtable() functions, respectively.
 - Contain arguments to specify formatting of the table, table caption (for 'List of Tables'), & cross-referencing.
- \usepackage{} statements (additional LATEX file structure items) often needed – see additional example posted on website.

Reproducible Research

⁵Must be *installed & loaded* – see R lectures Theresa A Scott, MS (Biostatistics)

<<>>= options, *cont'd*

▷ Can insert generated *graphs* using a fig = true flag.

- R code chunk contains the code that generates the graph.
 - IMPORTANT: R code must generate *only one* figure.
- An EPS & PDF file of the graph are created & saved (by default) to same folder/directory as .nw file.
 - Can be saved in a sub-folder/directory see Sweave manual.
- An \includegraphics{} statement is inserted in the .tex file, which inserts the saved file when the .tex file is compiled.
- By default, no caption is given to inserted graph causes graph not to be listed in 'List of Figures'.
 - Solution: Wrap R code chunk with fig = true flag with \begin{figure} & \end{figure} environment & a corresponding \caption{} statement.
- More in Sweave manual FAQ A.4 A.11 & Section 4.1.2.

Embedding R code in a LATEX sentence

 \triangleright Often wish to incorporate a value calculated using R into a \square TEX documentation sentence.

• Can do this using $\sum expr{expr}$, where expr is R code.

Example: 'The mean quarter mile track time of the N =

 $Sexpr{nrow(mtcars)}$ cars included in the mtcars data set was

\Sexpr{round(mean(mtcars\$qsec, na.rm = TRUE), 1)} seconds.'

evaluates to 'The mean quarter mile track time of the N = 32 cars included in the mtcars data set was 17.8 seconds.'

 \triangleright The \Sexpr{} cannot break over many lines & must not contain curly brackets ({ }).

More complicated/lengthy expressions can be easily executed & assigned as an object in a *hidden* code chunk & then the assigned object referenced inside the \Sexpr{}.

Theresa A Scott, MS (Biostatistics)

Reproducible Research

Section IV:

Some additional information

What to do...

▷ When you get an error in the Sweave step: check R code chunks.

- Recall, will be told in which code chunk the error occurred.
- Check to make sure every R code chunk begins with a <<>>= (with possible flags) & ends with an @ sign.⁶

- Error could be caused by output inserted in the .tex file via a
 \Sexpr{} expression or a results = tex flag.
- Comment out LATEX documentation chunks and/or whole R code chunks (from <<>>= to @) in .nw file using % signs.

▷ Whenever .nw file or data file changes: re-run Sweave step on the (modified & saved) .nw file & re-compile resulting .tex file.

 6 Even though 0 sign is technically a *header* for a \Box_{EX} documentation chunk, think of it as a *footer* for an R code chunk. Theresa A Scott, MS (Biostatistics) Reproducible Research 27 / 29

Useful tips/recommendations

▷ Work out details of R code within an R session & then copy & paste correct code to an R code chunk within the .nw file.

▷ On a Windows machine, show all file extensions – uncheck the 'Folder Option' to 'Hide file extensions for known file types'.

▷ On a Linux/Unix machine, use Kate or ESS (Emacs Speaks Statistics) as your text editor; on a Windows machine, use WinEdt.

 \triangleright When you start a new R session,

- (1) Use the Stangle() function to extract all of the R code chunks from the .nw file & write them to a .R code file.
- (2) Use the source() function to read in the .R code file & execute the R code chunks.
- Allows you to quickly execute all the R code chunks without having to copy/paste from .nw file to the R command prompt.

Resources & references

▷ Today's material (including <i>extended</i> Sweave example):		
http://biostat.mc.vanderbilt.edu/TheresaScott		
\triangleright R:		
R lectures (http://biostat.mc.vanderbilt.edu/TheresaScott)		
Weekly R Clinic: Thursdays 2:00 - 3:00 PM in MCN D-2221;		
also cover LATEX & Sweave; http://biostat.mc.vanderbilt.edu/RClinic		
⊳ latex:		
'The Not So Short Intro to Large Y' document		
(http://www.ctan.org/tex-archive/info/lshort/english/lshort.pdf)		
Documentation, tutorials, etc written by CTAN		
(http://www.ctan.org) & TUG (http://www.tug.org)		
▷ Sweave:		
The Sweave manual (includes great FAQs) & examples		
(http://www.ci.tuwien.ac.at/~leisch/Sweave/)		
Theresa A Scott, MS (Biostatistics) Reproducible Research 29 / 29		